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SUMMARY 
A new derivation of the parametric expansion of the dynamic programming algorithm for optimal feedback-feed- 
forward controller design is presented. Matrix methods are employed to give clarity to the results first offered by 
Merriam. The advantages of the optimal design technique for multivariable problems are readily apparent. A unique 
technique is given for easily solving the design equations for the case of time invariant systems with gaussian load 
disturbance. 

1. Introduction 

Optimal feedback controllers have been studied by many people over the last few years. The 
literature abounds with a large variety of systems used in conjunction with recently developed 
optimal control theory [1]. Feedforward or "invariant" controllers have enjoyed a high degree 
of popularity, especially in the chemical industry [8, 3, 41 . Luecke and McGuire [7] obtained 
an optimum composite feedforward-feedback controller using Weiner's frequency domain 
methods [10]. While they observed good results, the Weiner method suffers from restrictions 
which exclude multivariable systems from consideration. The control design method described 
herein does not include any restriction on time-varying multivariable systems. 

2. Derivation of Design Equations 

Consider a linear dynamic system of the form 

(t) = B x (t) + Cm (t) + Ou (t) (1) 

q (t) --- A x (t) 

where 

x (t) = state vector 
re(t) = control vector 
u(t) = disturbance vector 
q(t) = output vector 
A, B, C, D = n x n coefficient matrices. 

A large number of random load disturbance signals can be characterized by the following 
autocorrelation function 

O.u = fiz e-Vl~l; z ~ ( - o o ,  c~) (2) 

where 17 = mean square load disturbance 
v = disturbance frequency in radians per unit time. 

The familiar gaussian signal representation [6] will be used. 
Define a scalar performance index 

e(t) = {(q(#), ~q(#))+(m(#) ,  T m ( # ) ) } d #  (3) 
t 
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where T = terminal time boundary 
= non-negative definite diagonal output weighting matrix 

7 ~ = positive definite diagonal control weighting matrix 
By imposing the restriction of non-negative and positive definite weighting factors, the extremal 
of e(t) must exist. 

Since the process is subject to rand c~-a load disturbances and measurement noise, the inte- 
grand is dependent on a particular ensemble. The conditional mean can be used to rid the 
performance index--hence the optimal controller--of its ensemble dependence. 

e(t) t = ~ _ ~  ep(e[y; t)de (4) 

where e = amplitude of e(t) 
y = amplitude of measured signals at time t 
p = conditional probability density 

The conditional probability density is the probability of amplitude e at time t given the 
measured values of y at the same time t. Then the performance index to be extremized for each 
fixed value of time t is 

e(t) t = f T  {<q(#), ~bq(#)) t + <re(U), 7Jm(#))t}d#. (5) 

In order to use the dynamic programming procedures, a minimum performance index must 
be def'med. 

E (x (~r) ,tcr) = Min e (a) t (6) 
re(o) E M 

where M = closed set of allowable control signal values. 

The continuous form of the dynamic programming algorithm [-9] is 

Min q(~),~q(~r)) t +(re(a),  ~m(~) )  t + _  ~(~)~ - ~E[x(~)t'~r-] (7) 

For linear systems it has been shown [-12] that the minimum performance index is at most a 
quadratic function of the state variable. Therefore the minimum performance index can be 
expanded in a truncated Taylor series in terms of three unknown parameters. 

E [x(o')', o'] =I  (a)-2(~t) I  J(o')+(x~ 'i)' K (a)x(~)  t 

where I(~r) is a scalar element, d(o-) is a n-element feedforward vector, and K(a) is a symmetric 
n x n feedback matrix. 

The partial derivatives of E(x(a)  t, cr) needed to evaluate equation (7) are 

~-(-~(a)' = - -2JT(a)+2  (X(a)t) T K(cr) (9) 

aE Ix 
&r - i(~r)-Z(x(cr)t)rJ(~r)+(x(~)')TK(cr)x(cr) ' (10) 

Carrying out the minimization procedure indicated in equation (7), the optimal control equation 
is 

m*(t) = T - 1 C r  J ( t ) -  ~ -  ~ CT K( t )x ( t )  t (11) 

where m* �9 M 
To simplify notation the conditional mean and time arguments are deleted from the rest 

of this discussion. 
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Substituting equations (9), (10), and (11)into equation (7)results in 

-- I-[- 2xT j - -  xT Kx  = xT AT dI) Ax  + (-- 2JT + 2xT K)Du 

--�88 2JT + 2xT K) C ~  - i cT ( -  2J)+ 2Kx 

+ ( -  2J T + 2x rK)  Bx.  (12) 

Expanding this equation and collecting terms with like powers of the state variable, x, gives 

_1  + 2xT j _  xT Kx  = {jT CtlJ- 1 cT j__ 2jT Ou} 

+ i T {  +2KCTt-  t CT j _ 2 B T  j + 2 K D u }  

+ xT {AT q~A--KC7 j - i  CT K + 2KB} x (13) 

This equation must hold for all possible values of the state variable x, so like powers of x on 
each side of the equation can be equated. 

In order to be able to equate the quadratic terms, the factors within the braces of the right- 
hand side quadratic must be shown to be symmetric be'cause the left-hand side, K, is symmetric. 
The first two factors are already symmetric, so it remains to be shown that x r 2 K B x  can be 
manipulated into an equivalent symmetric form 

2KS = (KB + BT K) + ( K B -  BT K) . (14) 

The first term of the right-hand side of this equation is symmetric while the second term is 
skew-symmetric. It can be shown that the quadratic form of the skew-symmetric matrix is zero. 

Consider two arbitrary vectors y ~/nd z which are related by 

y = Uz (15) 

Then 
z r ( K S -  BTK)z = z r K n z -  z r n r Kz  (16) 

or 
z r ( K B - U r  K)z  : zT Ky- -yT  Kz  = 0 (17) 

because K is symmetric. Therefore the symmetry of the quadratic term has been demonstrated. 
Then the equations which must be solved to determine the unknown parameters are 

i(a) = JT(a)Du--JT(a)C ~ -1  cT j (a)  (18) 

K (r = K (a) C 7 j -1 CT K (a ) -  Br K (a ) -  K ( a ) B -  AT q~ A (19) 

J (a) = K (a) C T - i  C r j (a) _ B r j (a) + KDu (o-) t . (20) 

The boundary conditions for this equation follow directly from equation (3) 

I(T)  = J ( T ) =  K ( T ) =  0. (21) 

Merriam [9J arrived at the same equations by way of a complicated summation notation 
operation. Because of typographical errors and the unfortunate complexity of notation, his 
results have not received wide attention. 

3. Separable Load Disturbances 

Equation (18) is not convenient for control purposes in its present form. Because the load 
disturbance was restricted to gaussian statistics, a further simplification results. It is well 
known [11] that the conditional mean of a gaussian signal can be written in a separable form 

u ( o ) '  = t)u(t)' 
where U (G, t) = ratio of the autocorrelation functions of u at time t and time a. 
Notice that u~ '  is the measurable disturbance signal. 

(22) 
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A new parameter can be defined 

d (t) : S ( t )u( t )  t . 

Substituting this expression into equation (19) and rearranging results gives 

S(o') = [ K ( a ) C  ~ -1  CT- -BT]S(a )+K(a)DU(a ,  t). 

In terms of this new parameter, the optimal control equation is 

(23) 

(24) 

, ,*  (t) = { ~,-1 c T s  (t)} u ( t ) '+  { ~,-1 c T K (0} x ( t ) ' .  (25) 

The important feature of this new control equation is that the control signal is now a direct 
function of the two measurable signals of the process u (t) t and x (t) t. Therefore, the terms within 
brackets in equation (25) are the feedforward and feedback controller gains. 

Once the system dynamics {equation (1)} and the autocorrelation function of the load 
disturbance {equation (2)} are known, and the constraints {equation (3)} are chosen, equations 
(20) and (24) must be solved. Then equation (25) furnishes the configuration and the various 
gains required for an optimal composite feedforward-feedback control system. 

4. Time-Invariant Regulatory Control 

For the practical case of designing a regulatory control system (T~oo), these equations are 
readily solved. Equation (20) is the matrix riccatti differential equation which has received 
considerable attention in recent years. There are several good methods [5] available for solving 
this equation to obtain the feedback parameter, K. 

The impulse response solution of equation (24) is 

S ( O = q o ( t - T ) S ( T )  + q ~ ( t - e ) K D U ( c ~ - O d a  (26) 
T 

where ~o (t) is the fundamental matrix or matrizant of the homogeneous part of equation (24). 
Implementing the boundary condition and rearranging 

;7 S(0=  - q ~ ( - e ) K D U ( ~ ) & .  (27) 

Since we are considering the time-invariant (T~oo) problem, this equation becomes 

S = - ( p ( - e ) K D U ( O & .  (28) 
o 

For gaussian signals 

U(0 - O (0 
O(0) for e > 0 .  (29) 

Then from equation (2) the separable portion of the load disturbance is 

U (e) = e ~ (30) 

where  : [i"!!i'"! ] 
The diagonal elements of the matrix exponential contain the frequencies of the various input 
disturbances. The off-diagonal elements would normally be zero for the vast majority of 
practical problems. 
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Equation (23) becomes 

S =  - f ~ ee~KDe~de (31) 

where P = [B r -  KC  7 s -  1 Cr K]. 
Bellman [2] has shown that the above equation is the solution of the matrix equation 

PS + S~ = KD (32) 

provided the integral exists for all KD. Furthermore, the necessary and sufficient conditions 
that this integral exists is that /z i+ 2i< 0, where #i, 2 i are the characteristic roots of P and 
respectively [2]. For physically realizable systems, the above conditions are always met 
because the real parts of the characteristic roots of these matrices must be negative for stable 
systems. 

Rearranging equation (32) into a form convenient for trial and error solution gives 

S i+1 = P - I ~ S i  (33) 

where j =  the iteration index. 
The feedforward gain, S, on the right-hand side of this equation is used to calculate a new 

matrix S ~+ 1. This procedure would be continued until some convergence criteria is satisfied. 
Actually equation (32) may be solved directly. 

P x l + I x a - r S  = KD (34) 
or 

S =  P x I + I x a - r - I  K D .  (35) 

The symbol, x ,  denotes the first power Kronecker product and is defined as 

A x B = ( a i j B )  i , j =  1 . . . .  ,n  (36) 

Note that the Kronecker product of two n-dimensional matrices is an n2-dimensional matrix. 
This quadratic increase in dimensionality unfortunately limits the practicality of this solution 
method, so the iteration scheme is the preferred method of solution. 

5. An Example 

The application of the previous mathematical development to the optimal control of a simple 
process emphasizes the power of the parametric expansion technique. A perfectly mixed 
continuous reactor can be represented by the following first order dynamics 

= - ax +bm + cu (37) 

where x = system output 
m = control variable 
u = disturbance 
a, b, c = system gains. 

The optimal regulatory control of this process can be described by a scalar performance 
index 

e(t) = {x2 +m2}dt .  (38) 
t 

Since gaussian characteristics of the stochastic disturbances are common in the chemical 
industry, the autocorrelation of the variable, u, can be described as follows : 

O u . ( T )  = u z e-~Lrl (39) 

where u 2 = mean square amplitude 
v = frequency 
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The optimal control equation follows directly from equation (25). 

eS cK x(t) (40) m* (t) = . ( t )  + 

where the parameter, S, is defined by equation (28) and the parameter, K, is defined by equation 
(19). 

An analytical expression for the optimal control equation is readily obtained by solving 
for S and K. 

m* (t) = QFF u ( t ) -  QFB x (t) (41) 

c - a + (a 2 -b b2/~) �89 (42) 
QFF-- b v+(aZ+b2/7@ 

- a + (a 2 q- b2/~) ~ (43) 
QFB = b 

The parameter, QFF, is the feedforward controller gain, while the parameter, QFB, is the familiar 
feedback gain. 

A very important point to be emphasized here is that the controller is a composite of both 
feedforward and feedback modes. Most control designers neglect the disturbances thereby 
getting only the feedback mode. 

Perfect control is achieved if the penalty on the control action approaches infinity (7-'--* oo). 
A brief examination of the control parameters discloses that ideal feedforward and infinite 
feedback are specifics. 

c 
lira QFF-  (44) 

7.t~ oO b 

lim QFB = O0 (45) 
t/L--r oo 

These results are in agreement with previous results. The difference in this approach is that the 
work of control is divided by the two different types of control operational modes. 

6. Conc lus ions  

The technique described herein is practical and easily implemented for the design of optimal 
regulatory control systems. More complicated time-varying systems could also be attacked 
with this method, but considerably more calculations (such as obtaining the matrix exponential) 
would be required. This design technique is more general than the previously used frequency 
domain methods. 
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